TOSVERT VF-S15

My function-S Instruction Manual

Contents

Contents 1 -

1. Introduction 2 -
2. Parameters Used 2 -
3. Summary of My Function-S - 2 -
4. Setting Parameters - 5 -
5. Examples of Setting - 12 -
Appendix 1 Table of My Function-S Parameters 25
Appendix 2 Computing Functions 27 -
Appendix 3 Input Terminal Function Selection Parameters 29 -
Appendix 4 Output Terminal Function Selection Parameters 31 -
Appendix 5 Internal Data 35
Appendix 6 Examples of Computing Function Settings 37 -
CONTENTS 1-
6. INTRODUCTION - 2 -
7. PARAMETERS USED. - 2 -
8. SUMMARY OF MY FUNCTION-S 2 -
9. SETTING PARAMETERS -5
10. EXAMPLES OF SETTING 12 -
APPENDIX 1 TABLE OF MY FUNCTION-S PARAMETERS 25 -
APPENDIX 2 COMPUTING FUNCTIONS 27 -
APPENDIX 3 29 -
INPUT TERMINAL FUNCTION SELECTION PARAMETERS 29 -
APPENDIX 4 31 -
OUTPUT TERMINAL FUNCTION SELECTION PARAMETERS 31 -
APPENDIX 5 INTERNAL DATA 35 -
APPENDIX 6 EXAMPLES OF COMPUTING FUNCTION SETTINGS 37 -

1. Introduction

My function-S adds programming capability to inverter's input/output signals without external relays or a PLC (programmable logic controller) in some cases.
The function makes it possible to reduce the space and cost required for the system.

2. Parameters used

My function-S uses the parameters 1900 to 1977 .
\Rightarrow For details of each parameter, refer to the relevant section.

3. Summary of My function-S

My function-S has the combined terminal function that combines the functions of the inverter's input and output terminals and the relay sequence function that combines logic operation functions.

Combined terminal function

The combined terminal function is activated to assign two or more functions to one terminal. The function can reduce the numbers of terminals and cables for your required operations. And it is possible to process some circuit without external circuit.

For example, you can assign the standby signal (default setting: always active) and the forward run command signal (default setting: Terminal F) to one terminal (example: Terminal F).
Terminal F can perform the two functions.
See Example 1 in Chapter 5 for details.
<Standard> <My function-S>

<Standard> <My function-S>

The combined terminal function can be used for output signals.
For example, you can assign the low speed detection signal (function No: 4) and small current detection (function No: 26) to one terminal (Terminal OUT). When both signals are detected, Terminal OUT outputs signal.
See Example 4 in Chapter 5 for details.

In case that an inverter is controled by a PLC (programmable logic controller), the PLC receives, processes, and sends the signals as processing result to the inverter.
(See Fig 3-1.)
The relay sequence function enables the inverter to perform itself in 28 steps without a PLC.
Because the function uses internal data and signals directly, the processing speed is faster than control with the PLC.
Furthermore, the function enables the inverter to use its multi-function input and output signals at the same time, and thus to perform various operations in a reduced number of steps.

Fig. 3-1 Signal flow between PLC and inverter

Fig. 3-2 Signal flow of inverter with My function-S
«Example» Start forward run with a push switch (non self hold switch).
Stop automatically if the output current is 120% or more of the rated current when the output frequency is 5 Hz or less.
For the sake of simplicity, stop signal input terminals are omitted here.
See Example 6 in Chapter 5 for details.

- Input and output symbols

- Timing chart

4. Setting parameters

This chapter explains how to set parameters related to the My function-S using the composition of the My function-S and the rules.

Input terminals

Input signal terminals that can be used with the My function-S are as follows;

- Input terminals (8 terminals: F, R, RES, S1, S2, S3, VIA, VIB)

VF-S15 has 8 input terminals.
The input terminals are used for following 2 ways.

1) Input terminals to which assign multiple functionss
2) Simple ON-OFF signal input terminals like a PLC

In this manual, such input terminals are referred to as $\mathrm{X} 1, \mathrm{X} 2$ to X 8 to distinguish them from case 1).

- Virtual input terminals (4 terminals)

Virtual input terminals cannot be turned on and off electronically unlike actual input terminals. Virtual input terminals can be turned on and off using communication function or My function-S. You can assign the multiple functions as same as actual input terminals.

- Internal terminals (8 terminals)

Internal terminals cannot be turned on and off electronically unlike actual input terminals. Internal terminals can be turned on and off using communication function or My function-S. You can not assign the multiple functions as same as the virtual input terminals. They correspond to the internal relay used in PLC. They are used for preserving and reading the status.

- Computing function

The My function-S can perform logical operations on input/output signals and compares and computes some data, such as frequency, current, and torque data that the inverter detects.
A table of computing functions is shown in Appendix 2.
Available data that the inverter detects are listed in Appendix 5.

- Logical comparison

- Commutation

Output terminals

Output signal terminals used with the My function-S are following
VF-S15

- Output terminals (3 terminals: RY, OUT, FL)

VF-S15 has 3 output terminals.
You can assign the multiple functions to the output terminals.
A table of output terminal functions is shown in Appendix 4. Only the positive logic settings are used for My function-S.

Note) Negative logic settings of output terminal functions cannot be used for the My function-S.

Computation results can be output by assigning the My function-S output 1 to 16 to the output terminals .

Setting parameters

The My function-S consists of 7 units of the same composition. Each unit consists of 4 steps, and therefore there are 28 steps in total. See Fig.4-1 for the composition of each unit.
Each step consists of one command.
Each unit begins with a data read (LD) command as step 1 and ends with a data transfer (ST) command as step 4 . You set the commands and objects to step 2 and 3 in accordance with the requested functions.

Unit 1			\rightarrow	Unit 2			$\rightarrow \rightarrow$	Unit 7		
Step 1	LD	8900		Step 1	LD	8905		Step 1	LD	8953
Step 2	月90:	8902		Step 2	8907	9908		Step 2	8954	8955
Step 3	月903	8904		Step 3	8909	8910		Step 3	8956	8957
Step 4	ST	8905		Step 4	ST	19:1		Step 4	ST	A958

Fig. 4-1 My function-S block diagram

Table 4-1 is the My function-S parameters.

Table 4-1 Table of My function-S parameters

		Title	Function	Adjustment range	Default setting
Unit 1	Step 1 (Objects)	8983	Input function target 11	Input terminal number 18: No function i: Terminal F Z : Terminal R 3 : Terminal RES 4: Terminal S1 5 : Terminal S2 E: Terminal S3 7: Terminal VIB B: Terminal VIA 9 to 20 : It to 2 : Virtual input terminal 1 to 4 $\Xi 5$ to Ξ : Internal terminal 1 to 8 9 18 to 934 : My function-S output data number. 1806 to 655 : Output selection number (Note 1) 208 to 2099 FD00 - FD99 (Note 2) 3096 to 399 : FE00 - FE99 (Note 2)	8
	Step 2 (Commands)	898	Input function command 12	II: NOP (no operation) i: ST (move) z : STN (move (inversion)) \exists : AND (logical product ($\mathrm{A} \cap \mathrm{B}$)) 4: ANDN (logical product $(A \cap B)$) 5 : OR (logical sum ($\mathrm{A} \cup \mathrm{B}$)) $\square: \operatorname{ORN}($ logical sum $(A \cap \bar{B}))$ 7: EQ (equal) B: NE (not equal) 9: GT (greater than) 1 11 : GE (greater or equal) i : LT (less than) IE: LE (less or equal) I 3 : ASUB (absolute) 14 : ON (on delay timer) 15: OFF (off delay timer) 15: COUNT1 (counter 1) 17: COUNT2 (counter 2) 18: HOLD (hold) 19: SET (set) 2 $1:$ RESET (reset) I: CLR(clear) E: CLRN(clear (inversion)) こコ: ON2(on delay timer 2) 24: OFF2 (off delay timer 2)	8
	Step 2 (Objects)	8983	Input function target 12	Same as 8989	8
	Step 3 (Commands)	8983	Input function command 13	Same as 5981	8
	Step 3 (Objects)	8984	Input function target 13	Same as 8989	8
	Step 4 (Output to)	8985	Output function assigned object 1	Same as 8989	8

Note 1: See Table 8-6 "Output terminal functions" in Appendix 4.
Note 2: See Table 8-7 "Data that My function-S can handle" in Appendix 5.

		Title	Function	Adjustment range	Default setting
Unit 2	Step 1 (Objects)	8905	Input function target 21	Same as 9900	0
	Step 2 (Commands)	8907	Input function command 22	Same as 590 (0
	Step 2 (Objects)	8908	Input function target 22	Same as 9900	0
	Step 3 (Commands)	8909	Input function command 23	Same as 990 (0
	Step 3 (Objects)	8910	Input function target 23	Same as 1900	0
	$\begin{aligned} & \text { Step } 4 \\ & \text { (Output to) } \\ & \hline \end{aligned}$	19:	Output function assigned object 2	Same as 1900	0
Unit 3	$\begin{aligned} & \text { Step } 1 \\ & \text { (Objects) } \end{aligned}$	8912	Input function target 31	Same as 5900	\square
	Step 2 (Commands)	1993	Input function command 32	Same as 990 ;	0
	Step 2 (Objects)	8944	Input function target 32	Same as 8900	0
	Step 3 (Commands)	896	Input function command 33	Same as 190 i	0
	Step 3 (Objects)	8915	Input function target 33	Same as 9900	0
	Step 4 (Output to)	8917	Output function assigned object 3	Same as 1900	0
Unit 4	Step 1 (Objects)	8935	Input function target 41	Same as 1900	0
	Step 2 (Commands)	8935	Input function command 42	Same as 190 :	\square
	Step 2 (Objects)	8937	Input function target 42	Same as 1900	0
	Step 3 (Commands)	8938	Input function command 43	Same as 190 (0
	Step 3 (Objects)	8939	Input function target 43	Same as 8900	\square
	$\begin{aligned} & \text { Step } 4 \\ & \text { (Output to) } \end{aligned}$	8940	Output function assigned object 4	Same as 8900	0
Unit 5	Step 1 (Objects)	894 :	Input function target 51	Same as 1900	0
	Step 2 (Commands)	8943	Input function command 52	Same as 990 (0
	Step 2 (Objects)	8943	Input function target 52	Same as 1900	0
	$\begin{array}{\|l\|} \hline \text { Step 3 } \\ \text { (Commands) } \\ \hline \end{array}$	8944	Input function command 53	Same as 190 i	0
	Step 3 (Objects)	8945	Input function target 53	Same as 1900	\square
	$\begin{aligned} & \text { Step 4 } \\ & \text { (Output to) } \\ & \hline \end{aligned}$	8945	Output function assigned object 5	Same as 1900	\square
Unit 6	Step 1 (Objects)	8947	Input function target 61	Same as 8900	0
	Step 2 (Commands)	8948	Input function command 62	Same as 190 :	0
	Step 2 (Objects)	8949	Input function target 62	Same as 1900	0
	Step 3 (Commands)	8950	Input function command 63	Same as 190 (\square
	Step 3 (Objects)	195:	Input function target 63	Same as 1900	0
	Step 4 (Output to)	8953	Output function assigned object 6	Same as 9900	0

		Title	Function	Adjustment range	Default setting
Unit 7	Step 1 （Objects）	8953	Input function target 71	Same as 9890	\square
	Step 2 （Commands）	8954	Input function command 72		8
	Step 2 （Objects）	8955	Input function target 72	Same as 9980	8
	Step 3 （Commands）	8955	Input function command 73	Same as 9 90	8
	Step 3 （Objects）	8957	Input function target 73	Same as 9980	8
	Step 4 （Output to）	8958	Output function assigned object 7	Same as 4980	8

The four kinds of data in the table below，percentage，frequency，time（second），and the number of times can be compared and computed，and they are specified with parameters for the object to which commands are issued．

Title	Function	Adjustment range	Default setting
9918	Output percent data 1	0．00－200．0\％	0.00
8919	Output percent data 2	0．00－200．0\％	0.00
8920	Output percent data 3	0．00－200．0\％	0.00
日9E：	Output percent data 4		0.60
－9E2	Output percent data 5		0.108
ロ9こう	Output frequency data 1		0.13
8924	Output frequency data 2	6．01－500．03Hz	0.18
R9E5	Output frequency data 3	6．01－500．03Hz	0.17
8985	Output frequency data 4	6．0－500．0 O	0.18
日9こ7	Output frequency data 5		0.0
A9ES	Output time data 1	0.0 － 500.0 .0 s	0.17
19E9	Output time data 2		0.17
8930	Output time data 3	0．0） 6 －600．0s	0.15
8931	Output time data 4	0.0 － 5000.0 s	0.01
R932	Output time data 5	20．0 6 － 5000.0 s	0.131
ロ93コ	Nnmber of times of output data 1	8－9999times	\square
1934	Nnmber of times of output data 2	8－9999 times	0

The table below lists the four virtual input terminals available．

Title	Function	Adjustment range（Note 1）	Default setting
8973	Virtual input terminal selection 1	O－203	\square
8974	Virtual input terminal selection 2	ロ－203	\square
8975	Virtual input terminal selection 3	0－203	\square
8975	Virtual input terminal selection 4	0－203	0

Note 1：See Table 8－4＂Input terminal functions＂in Appendix 3.

You can set enable or disable state of the My function-S

When you set the My function-S parameters, be sure to set $8977=\Omega$ (disabled) to prevent the system from starting accidentally.

After setting the My function-S parameters, change 9977 to i (My function-S + permission signal) or Ξ (My function-S always ON) to make My function-S ready to be enabled. (If you set AG77=1, My function-S is enabled when a permission signal is issued.)
Note: It takes a maximum of 0.5 second for a change of the My function-S parameters to be reflected internally. Keep standby state at least 0.5 second after setting the parameters.

Title	Function	Adjustment range	Default setting
8977	My function-S selection	II: Disabled : My function-S + permission signal コ: My function-S always ON	9

```
8(Disabled):
    My function-S is disabled.
    i (My function-S + permission signal):
    My function-S is in standby state.
    function-S trigger signal), the My function-S is enabled.
I'(My function-S always ON):
    My function-S is enabled when the inverter is turned on.
```

 When you put input signal into the input terminal assigned functions \(\boldsymbol{5}\) or 5 (My
 Note: You cannot change the parameter 977 during inverter operation.

- In case that the My function-S is disabled

The My function-S settings are disabled.
If the input terminals are turned on, the inverter operates by the input terminal function.

- In case that the My function-S is in a standby state

All signals except the followings are recognized as OFF signals inside of the inverter.

1. My function-S trigger signal
2. Emergency stop and reset command

Note: Don't use the input terminals assigned the above functions in the My function-S. Or the My function-S permission, the emergency stop function, etc might not activate normally.

- In case that My function-S is enabled

If the input terminals are turned on, the inverter operates by the My function-S.

5. Examples of setting

This chapter gives some examples of setting.
Note that the settings described below are examples and there are other ways to set a function for some examples.

- Examples of the setting of the combined terminal function

Example 1: Performing 2 functions by 1 terminal.
Standby signal is connected with Terminal F (Forward run command). (F+ST)
Standby signal is connected with Terminal R (Reverse run command). (R+ST)

Example 2: Performing 2 functions by 1 terminal.
Performing standby and forward run command by the Terminal S1. (ST+F)

Example 3: Performing 3 functions by 1 terminal.
Performing standby, forward run command, and preset-speed command 1 by the Terminal S1. (ST+F+SS1)

Example 4: Output signal by logical product of 2 functions.
Output the signal on the condition of detecting both a low-speed signal and a small current signal from Terminal OUT.

- Examples of the setting of the relay sequence function

Example 5: Operation with a combination of 2 input signals
Forward run: Either input terminal is turned on.
Reverse run: Both input terminals are turned on.
Stop : Both input terminals are turned off.

Example 6: Operation with push type switch.

Example 7: Automatic stop by some conditions.
Automatically stop on the condition of 5 Hz or less of output frequency and 120% or more of output current.
＜Example 1：Performing 2 functions by 1 terminal＞
Standby signal is connected with Terminal F（Forward run command）．（F＋ST）
Standby signal is connected with Terminal R（Reverse run command）．（R＋ST）

See Fig 5－1 for wiring diagram and Fig．5－2 for block diagram．
Assign the forward run command (F) to Terminal F and reverse run command (R) to Terminal R．（Default setting）
Assign the standby（ST）to virtual input terminal．
If the Terminal $F(R)$ is turned on，the virtual terminal is turned on automatically． $F(R)+S T$ functions are performed．

Fig．5－1 Wiring diagram for Example 1

Fig．5－2 Block diagram for Example 1

Parameter setting

		Title	Parameter setting	Description
Prior setting		8977	In（Default）	Set to＂Disabled＂of the My function－S．
		Fiti	Ξ（Default）	Assign the forward run command to the Terminal F．
		$F \cdot \underline{I}$	4 （Default）	Assign the reverse run command to the Terminal R．
		日 973	\square	Assign the standby to the virtual input terminal 1.
		8974	E	Assign the standby to the virtual input terminal 2.
Unit 1	Step 1	8986	1	Read Terminal F input signal（LD F）．
	Step 2	时旦㫛	$\underline{17}$（Default）	NOP command（no operation）
		ค98こ	8 （Default）	
	Step 3	8903	IT（Default）	NOP command（no operation）
		8989	If（Default）	
	Step 4	8905	I	Transfer the result to the virtual input terminal 1.
Unit 2	Step 1	8906	E	Read Terminal R input signal（LD R）．
	Step 2	8987	3 （Default）	NOP command（no operation）
		890日	IT（Default）	
	Step 3	¢989	8 （Default）	NOP command（no operation）
		8916	\％（Default）	
	Step 4	R911	ここ	Transfer the result to the virtual input terminal 2.
－	－	8977	こ	Set to＂My function－S always ON＂．

＜Example 2：Performing 2 functions by 1 terminal＞
Performing standby and forward run command by the Terminal S1．（ST＋F）

See Fig 5－3 for wiring diagram and Fig．5－4 for block diagram．
Assign the standby（ST）to Terminal S1．
Assign the forward run command (F) to virtual input terminal 1.
If the Terminal S 1 is turned on，the virtual terminal is turned on automatically． ST＋F functions are performed．

Fig．5－3 Wiring diagram for Example 2

Fig．5－4 Block diagram for Example 2

Paramerter setting

		Title	Parameter setting	Description
Prior setting	－	8977	II］（Default）	Set to＂Disabled＂of the My function－S．
		F194	E	Assign the standby to the Terminal S1．
		ロ973	Ξ	Assign the forward run command to the virtual input terminal 1.
Unit 1	Step 1	月906	4	Read Terminal S1 input signal（LD S1）．
	Step 2		II（Default）	NOP command（no operation）
			IT ${ }^{1 / 2}$（Default）	
	Step 3	日鸟㕲	In（Default）	NOP command（no operation）
		日984	8 （Default）	
	Step 4	8965	\underline{Z}	Transfer the result to the virtual input terminal 1.
－	－	8977	こ	Set to＂My function－S always ON＂．

＜Example 3：Performing 3 functions by 1 terminal＞
Performing standby，forward run command and preset－speed command 1 by the Terminal S1．（ST＋F＋SS1）

See Fig 5－5 for wiring diagram and Fig．5－6 for block diagram．
Assign the standby（ST）to Terminal S1．
Assign the forward run command（F）to virtual input terminal 1.
Assign the preset－speed command 1 （SS1）to virtual input terminal 2.
If the Terminal S 1 is turned on，the virtual terminals are turned on automatically． ST＋F＋SS1 functions are performed．

Fig．5－5 Wiring diagram for Example 3

Fig．5－6 Block diagram for Example 3

Paramerter setting

		Title	Parameter setting	Description
Prior setting	－	8977	\square（Default）	Set to＂Disabled＂of the My function－S．
		F：14	5	Assign the standby to the Terminal S1．
		8973	Ξ	Assign the forward run command to the virtual input terminal 1.
		8974	6	Assign the preset－speed command 1 to the virtual input terminal 2.
Unit 1	Step 1	8900	4	Read Terminal S1 input signal（LD S1）．
	Step 2	890	1	Transfer command Tsansfer the result to the virtual input terminal 1.
		8903	ב1	
	Step 3	8963	\square（Default）	NOP command（no operation）
		8904	\square（Default）	
	Step 4	8905	ごコ	Transfer the result to the virtual input terminal 2.
－	－	8977	？	Set to＂My function－S always ON＂．

＜Example 4：Output signal by logical product of 2 functions＞
Output the signal on the condition of detecting both a low－speed signal and a small current signal from Terminal OUT．

See Fig 5－7 for block diagram．
Compute by logical product（AND）of a low－speed signal and a small current signal．
Transfer the result to the My function－S output1，and output signal from Terminal OUT．

Fig．5－7 Block diagram for Example 4

Paramerter setting

		Title	Parameter setting	Description
Prior setting	－	8977	\square（Default）	Set to＂Disabled＂of the My function－S．
		F13：	こここ	Assign the My function－S output 1 to the Terminal OUT．
Unit 1	Step 1	8900	1004	Read the low speed signal（LD LOW）
	Step 2	890：	\exists	AND command
		1902	1025	The logical product of low speed signal and small current signal．
	Step 3	8903	\square（Default）	NOP command（no operation）
		8904	\square（Default）	
	Step 4	8905	ここご	Transfer the logical product to the My function－S output 1.
－	－	8977	こ	Set to＂My function－S always ON＂．

This section gives an explanation of the relay sequence function using ladder diagrams.
One unit consists of maximum 4 steps. If your sequence consists of 5 steps or more, you need to change the composition to 4 steps or less.
<Example 5: Operation with a combination of 2 input signals> Input terminals are used as ON/OFF signal lilke a PLC in this example.
Forward run: Either input terminal is turned on.
Reverse run: Both input terminals are turned on.
Stop : Both input terminas are turned off.

See Fig 5-8 for wiring diagram and timing chart.

Fig. 5-8 Wiring diagram and timing chart for Example 5

Following is the ladder diagram.
The left is general sequence. The sequence of forward run command consists of 5 steps. You need to change the composition to 4 setps as the right for the My function-S.

Parameter setting				
		Title	Parameter setting	Description
Prior setting	－	8977	θ（Default）	Set to＂Disabled＂of the My function－S．
		F i ：	\square	Assign the＂no function＂to the Terminal F． Use the Terminal F as a simple input terminal（IX1）．
		F ：G	0	Assign the＂no function＂to the Terminal R ． Use the Terminal R as a simple input terminal（IX1）．
		1973	2	Assign the forward run command to the virtual input terminal 1 （VT1）．
		8974	4	Assign the reverse run command to the virtual input terminal 2 （VT2）．
Unit 1	Step 1	8900	1	Read IX1（F）terminal input signal．（LD IX1）
	Step 2	8901	4	ANDN command（ $\mathrm{X} 1 \cap \overline{\mathrm{IX2}}$ ）
		8902	E	
	Step 3	8903	\square（Default）	NOP command（no operation）
		8904	0 （Default）	
	Step 4	8905	こ5	Transfer the result to the internal terminal 1. （IX1 $\cap \overline{\mathrm{IX} 2} \Rightarrow I T 1$ ）
Unit 2	Step 1	8906	2	Read IX2（R）terminal input signal．（LD IX2）
	Step 2	8907	4	ANDN command（ $\mathrm{IX} 2 \cap \overline{\mathrm{IX} 1}$ ）
		8908	；	
	Step 3	8909	5	OR command（ $(\mathrm{IX} 2 \cap \overline{\mathrm{IX1}})$ UIT1）
		89 60	$こ 5$	
	Step 4	991：	こ	Transfer the result to the virtual input terminal 1. $((\mid \mathrm{X} 2 \cap \overline{\mathrm{IX} 1}) \cup \mathrm{IT} 1 \Rightarrow \mathrm{VT} 1)$
Unit 3	Step 1	ロ912	；	Read IX1（F）terminal input signal．（LD IX1）
	Step 2	8913	3	AND command（IX1＠IX2）
		8914	Ξ	
	Step 3	8915	\square（Default）	NOP command（no operation）
		8915	0 （Default）	
	Step 4	1997	$こ こ$	Transfer the result to the virtual input terminal 2. $(\mathrm{IX} 2 \cap \mathrm{IX} 1 \Rightarrow \mathrm{VT} 2)$
－	－	8977	2	Set to＂My function－S always ON＂．

NE（mismatch）command enables to combine the steps of unit 1 and 2.
If the signal of input terminal 1 and 2 don＇t match，forward run command is valid．

		Title	Parameter setting	Description
Unit 1	Step 1	8900	;	Read IX1 (F) terminal input signal. (LD IX1)
	Step 2	8901	\square	NEQ command ($(1 \times 1 \cap \overline{\mathrm{IX} 2}) \cup(\overline{\text { IX1 }} \cap \mathrm{IX} 2))$
		-902	2	
	Step 3	8963	\square (Default)	NOP command (no operation)
		8904	0 (Default)	
	Step 4	8905	こ	Transfer the result to the virtual input terminal 1. $((\mid X 1 \cap \overline{X X}) \cup(\overline{X X} 1 \cap \mid X 2) \Rightarrow V T 1)$

<Example 6: Operation with push type switch>
Start and stop by push type (non self-hold type) switches.
Start with the forward run command (reverse run command), and stop with the stop command.

See Fig 5-9 for wiring diagram and timing chart.

Fig. 5-9 Wiring diagram and timing chart for Example 6

Construct self-hold circuit for each forward run command and reverse run command. Break the self-hold by the other command or a stop command.

Following is the ladder diagram.
The left is general sequence of self-hold circuit. Each unit consists of 5 steps.
You need to change the unit A and B to two units each and make composition of 4 setps according to the My function-S.

Parameter setting

		Title	Parameter setting	Description
Prior setting	－	8977	\square（Default）	Set to＂Disabled＂of the My function－S．
		F i i	\square	Assign the＂no function＂to the Terminal F ． Use the Terminal F as a simple input terminal（IX1）．
		$F: 12$	8	Assign the＂no function＂to the Terminal R ． Use the Terminal R as a simple input terminal（IX2）．
		F 14	0	Assign the＂no function＂to the Terminal S1． Use the Terminal S1 as a simple input terminal（IX3）．
		8973	Ξ	Assign the forward run command to the virtual input terminal 1 （VT1）
		8974	4	Assign the reverse run command to the virtual input terminal 2 （VT2）
Unit 1	Step 1	8900	i	Read IX1（F）terminal input signal．（LD IX1）
	Step 2	890：	5	OR command（IX1UVT1）self－hold circuit
		8902	21	
	Step 3	8903	4	ANDN command（ $\mathrm{X} 1 \cup \mathrm{~V}$（1 $\cap \overline{\mathrm{IX} 2}$ ）
		8904	こ	
	Step 4	8905	こ5	Transfer the result to the internal terminal 1 $(\mathrm{IX} 1 \cup \mathrm{VT} 1 \cap \overline{\mathrm{IX} 2} \Rightarrow \mathrm{IT} 1$ ）
Unit 2	Step 1	8985	25	Read IT1（Internal terminal 1）signal（LD IT1）．
	Step 2	8907	4	ANDN command（ $\mathrm{T} 1 \cap \mathrm{IX3}$ ）
		8908	4	
	Step 3	8909	\square（Default）	NOP command（no operation）
		8910	\square（Default）	
	Step 4	日S：	こ	Transfer the result to the virtual input terminal 1 （VT1） （ $\mathrm{IT} 1 \cap \overline{\mathrm{IX} 3} \Rightarrow \mathrm{VT} 1$ ）

Unit 3	Step 1	日912	2	Read IX2（R）terminal input signal．（LD IX2）
	Step 2	－9：3	5	OR command（IX2 UVT2）self－hold circuit
		8914	ご	
	Step 3	－9：5	4	ANDN command（IX2 \cup VT2 $\cap \overline{\mathrm{XX}}$ ）
		8916	；	
	Step 4	－967	26	Transfer the result to the internal terminal 2 （IT2） $(\mathrm{IX} 2 \cup \mathrm{VT} 2 \cap \overline{\mathrm{X} 1} \Rightarrow \mathrm{IT} 2)$
Unit 4	Step 1	－195	ご	Read IT2（Internal terminal 2）signal（LD IT2）
	Step 2	8935	4	ANDN command（ $\mathrm{T} 2 \cap \mathrm{IX3}$ ）
		－937	4	
	Step 3	月938	8 （Default）	NOP command（no operation）
		1939	\square（Default）	
	Step 4	8940	$こ ゙ く$	Transfer the result to the virtual input terminal 2 （VT2） （ $\mathrm{IT} 2 \cap \overline{\mathrm{X} 3} \Rightarrow \mathrm{VT} 2$ ）
－	－	8977	Ξ	Set to＂My function－S always ON＂．

<Example 7: Automatic stop by some conditions>
Automatically stop on the condition of 5 Hz or less of output frequency and 120% or more of output current.
Start by push type (non self-hold type) switch.

See Fig 5-10 for wiring diagram and timing chart.

Fig. 5-10 Wiring diagram and timing chart for Example 7

- Terminal F is used as forward command with push type (non self-hold type) switch.
- Break the forward run command in case that the output frequency is 5 Hz or less and the output current is 120% or less of the rated.
- Forced stop by input signal from Terminal S1 (by breaking forward run command).

Following is the ladder diagram.
The left is general sequencef of self-hold circuit. Unit A consists of 5 steps.
You need to change the unit to two units, and make the composition of 4 setps according to the My function-S

Parameter setting by the ladder diagram

		Title	Parameter setting	Description
Prior setting	－	8977	0 （Default）	Set My function－S to＂Disabled＂．
		F i i	\square	Assign the＂no function＂to the Terminal F． Use the Terminal F as a simple input terminal（IX1）．
		F： 4	0	Assign the＂no function＂to the Terminal S1． Use the Terminal S1 as a simple input terminal（IX2）．
		H9：8	120	Set the limit at 120% to use it as a reference value when comparing and computing currents．
		－9こう	5	Set the limit at 5 Hz to use it as a reference value when comparing and computing frequencies．
		8973	Ξ	Assign the forward run command to the virtual input terminal 1 （VT1）
Unit 1	Step 1	8900	；	Read IX1（F）terminal input signal（LD IX1）
	Step 2	8901	5	OR command（IX1UVT1）
		8902	こ	
	Step 3	8903	4	ANDN command（ $\mathrm{X} 1 \cup \mathrm{VT1} \cap \overline{\mathrm{IT3}}$ ）
		8904	27	
	Step 4	8905	28	Transfer the result to the internal terminal 4 （IT4） $(\mathrm{IX} 1 \cup \mathrm{VT} 1 \cap \overline{\mathrm{~T} 3} \Rightarrow \mathrm{IT} 4)$
Unit 2	Step 1	8985	$2 \square$	Read IT4（Internal terminal 4）signal（LD IT4）
	Step 2	8907	4	ANDN command（IT4 $\cap \overline{\mathrm{IX} 2}$ ）
		H908	4	
	Step 3	8909	\square（Default）	NOP command（no operation）
		日 810	\square（Default）	
	Step 4	89：	こ	Ttansfer the result to the virtual input terminal 1 （VT1）． $(\mathrm{IT} 4 \cap \overline{\mathrm{X} 2} \Rightarrow \mathrm{VT} 1$ ）

		Title	Parameter setting	Description
Unit 3	Step 1	月912	3000	Read the output frequency（LD Output frequency）
	Step 2	1913	12	LE command（Comparison to 5Hz）
		8914	9こコ	
	Step 3	8915	0 （Default）	NOP command（no operation）
		8915	\square（Default）	
	Step 4	8917	$こ 5$	Transfer the result to the internal terminal 1 （IT1） （Comparison to $5 \mathrm{~Hz} \Rightarrow \mathrm{IT} 1$ ）
Unit 4	Step 1	8935	2003	Read the output current（LD Output current）
	Step 2	8935	10	GE command（Comparison to 120\％）
		A937	918	
	Step 3	8938	0 （Default）	NOP command（no operation）
		R939	\square（Default）	
	Step 4	1949	ご	Transfer the result to the internal terminal 2 （IT2） （Comparison to $120 \% \Rightarrow \mathrm{IT} 2$ ）
Unit 5	Step 1	8941	25	Read IT1（Internal terminal 1）signal（LD IT1）
	Step 2	194E	3	AND command（IT1 IT2）
		8943	ご	
	Step 3	8944	\square（Default）	NOP command（no operation）
		8945	\square（Default）	
	Step 4	8945	27	Transfer the result to the internal terminal 3 （IT3） （IT1 $\cap \mathrm{IT} 2 \Rightarrow \mathrm{IT} 3$ ）
－	－	8977	こ	Set to＂My function－S always ON＂．

Appendix 1 Table of My function－S parameters

Table 8－1 is the My function－S parameters．
Table 8－1 Table of My function－S parameters

Title	Function	Adjustment range	Default setting
8900	Input function target 11	Input terminal number 18：No function i：Terminal F Ξ ：Terminal R 7：Terminal RES 4：Terminal S1 5 ：Terminal S2 E：Terminal S3 7：Terminal VIB B：Terminal VIA こ to $\mathbf{\Xi}$－ 4 ：Virtual input terminal 1 to 4 こら to Ξ ：Internal terminal 1 to 8 918 to 934 ： My function－S output data number Output selection number（Note 1） 200 0 to 2959 FD00－FD99（Note 2） 30 0 名 to 3 39 FE00－FE99（Note 2）	0
898：	Input function command 12	II：NOP（no operation） i：ST（move） Ξ ：STN（move（inversion）） 3：AND（logical product（A $\cap B$ ）） 4：ANDN（logical product（A $\cap \mathrm{B})$ ） 5 ：OR（logical sum（A $\cup B)$ ） E：ORN（logical sum（ $A \cap \bar{B}$ ）） 7：EQ（equal） B：NE（not equal） 7：GT（greater than） 17：GE（greater or equal） i ：LT（less than） iz：LE（less or equal） i ヨi：ASUB（absolute） 14：ON（on delay timer） 15：OFF（off delay timer） in：COUNT1（counter 1） i 7 ：COUNT2（counter 2） 18：HOLD（hold） 19：SET（set） 2 1 RESET（reset） I 1 ：CLR（clear） E：CLRN（clear（inversion）） こコ：ON2（on delay timer 2） ご 4 ：OFF2（off delay timer 2）	8
A902	Input function target 12	Same as 9900	\square
A903	Input function command 13	Same as 7901	\square
8904	Input function target 13	Same as 7900	\square
8905	Output function assigned object 1	Same as 7900	\square
8906	Input function target 21	Same as 7900	7
A907	Input function command 22		\square
790日	Input function target 22	Same as 17900	\square
A989	Input function command 23		\square
8910	Input function target 23	Same as 7906	\square
A9 i	Output function assigned object 2	Same as 1904	\square

Note 1：See Table 8－6＂Output terminal functions＂in Appendix 4.
Note 2：See Table 8－7＂Data that My function－S can handle＂in Appendix 5.

Title	Function	Adjustment range	Default setting
日912	Input function target 31	Same as 9908	\square
8913	Input function command 32	Same as 7901	\square
8914	Input function target 32	Same as 9970	\square
8915	Input function command 33	Same as H 9 B i	\square
8915	Input function target 33	Same as 7970	\square
8917	Output function assigned object 3	Same as 5900	\square
P918	Output percent data 1		0.07
8919	Output percent data 2	亿．10～マ	0.170
8980	Output percent data 3		0.070
RGE1	Output percent data 4		0.00
时気	Output percent data 5		0.170
ロ9EJ	Output frequency data 1	0.00500000	17.10
R934	Output frequency data 2	21．2～500．03Hz	17.17
ロ9ご	Output frequency data 3	$0.6 \sim 507.70 \mathrm{~Hz}$	0.17
R936	Output frequency data 4		0.17
AgE7	Output frequency data 5		0.17
H9EG	Output time data 1		7171
R9E9	Output time data 2	$0.17 \sim 500.17 \mathrm{~s}$	0.01
R930	Output time data 3		17．17
8931	Output time data 4	0.0 i 5080.10 s	0.101
ロ93E	Output time data 5	0.0 i 5080.10 s	0.17
ロ93コ	Number of times of output data 1	6～9999 times	\square
8934	Number of times of output data 2	7～9999 times	\square
7935	Input function target 41	Same as 7900	\square
8935	Input function command 42	Same as 7901	\square
8937	Input function target 42	Same as 19 Ba	\square
R939	Input function command 43	Same as 9 90；	9
8939	Input function target 43	Same as $\boldsymbol{H 9 0}$	\square
8940	Output function assigned object 4	Same as 7970	－1
894	Input function target 51	Same as 1900	\square
R94E	Input function command 52	Same as 4901	\square
8943	Input function target 52	Same as 7908	\square
8944	Input function command 53	Same as 1901	\square
8945	Input function target 53	Same as 7980	\square
8945	Output function assigned object 5	Same as 7978	\square
8947	Input function target 61	Same as 7908	\square
8948	Input function command 62	Same as 9901	8
8949	Input function target 62	Same as 9980	\square
8950	Input function command 63	Same as 7901	\square
895	Input function target 63	Same as 7900	\square
月95E	Output function assigned object 6	Same as $\boldsymbol{H} 9 \mathrm{Ca}$	\square
8953	Input function target 71	Same as 7900	\square
8954	Input function command 72	Same as 9901	\square
8955	Input function target 72	Same as 1980	\square
8956	Input function command 73	Same as H 9 B i	\square
8957	Input function target 73	Same as 7908	O
8958	Output function assigned object 7	Same as 9950	\square
R973	Virtual input terminal selection 1		\square
8974	Virtual input terminal selection 2	O－ごら（Note3）	8
8975	Virtual input terminal selection 3	－203（Note3）	\square
8975	Virtual input terminal selection 4	O－ECJ（Note3）	\square
8977	My function－S selection	II：Disabled i：My function－S＋permission signal Z：My function－S always ON	8

Note 3：See Table 8－4＂Input terminal functions＂in Appendix 3.

Appendix 2 Computing functions

Table 8-2 is the computing functions provided by the My function-S.

Table 8-2 Computing functions

Input function command	Computation name	Function	Description
\square	NOP	No operation	Unnecessary sections (columns) of the My function-S program.
;	ST	Transfer	Used mainly to read data.
E	STN	Transfer (inversion)	Used mainly to invert data and read inverted data.
3	AND	Logical product	Logical product of data $(\mathrm{A} \cap \mathrm{B})$
4	ANDN	Logical product (inversion of right side)	Logical product of data $(\mathrm{A} \cap \overline{\mathrm{B}})$
5	OR	Logical sum	Logical product of data $(\mathrm{A} \cup \mathrm{B})$
5	ORN	Logical sum (inversion of right side)	Logical product of data $(A \cup \bar{B})$
7	EQ	Comparison of data for matching	Compare two pieces of data, and puts out a 1 if they match each other or a 0 if not.
\square	NE	Comparison of data for mismatch	Compare two pieces of data, and puts out a 0 if they match each other or a 1 if not.
9	GT	Comparison of sizes ($\mathrm{A}>\mathrm{B}$)	Compare the size of two pieces of data (A_GT_B), and puts out a 1 if A is more than $B(A>B)$ or a 0 if A is equal to or less than $B(A \leqq B)$
10	GE	Comparison of sizes $(A \geqq B)$	Compare the size of two pieces of data (A_GT_B), and puts out a 1 if A is equal to or more than B $(A \geqq B)$ or a 0 if A is less than $B(A<B)$
' i	LT	Comparison of sizes $(A<B)$	Compare the size of two pieces of data (A_GT_B), and puts out a 1 if A is less than $B(A<B)$ or a 0 if A is equal to or more than $B(A \geqq B)$
12	LE	Comparison of sizes ($\mathrm{A} \leqq \mathrm{B}$)	Compare the size of two pieces of data (A_GT_B), and puts out a 1 if A is equal to or less than $B(A \leqq B)$ or 00 if A is more than $B(A>B)$
13	ASUB	Absolute value of difference	Put out the absolute value of the difference between two pieces of data. IA-BI
14(Note 1)	ON (ON timer)	ON delay	Delays the timing of turning data ON by the time simultaneously with turning on the power in case the signal is already on.
65(Note 1)	OFF (OFF timer)	OFF delay	Delay the timing of turning data OFF by the time simultaneously with turning on the power in case the signal is off.
\% (Note 1)	COUNT1	Counter	Count the number of input pulses (count the number of rising edges) and put out a 1 when reached the pulse count specified with 1993 .
17(Note 1)	COUNT2	Counter	Count the number of input pulses (count the number of rising edges) and put out a 1 when reached the pulse count specified with $F 954$.
'G(Note 1)	HOLD	Peak hold	Put out the peak input value.
9(Note 1)	SET	Set	Set data.
2G(Note 1)	RESET	Reset	Reset data.
\underline{Z} (Note 1)	CLR	Clear	Clear data.

ごぎ（Note 1）	CLRN	Clear（Inversion）	Clear data（Inversion）．
こコ	ON2 （ON timer 2）	ON delay	Delay the timing of turning data on by the time data output by specified time in case the signal is on when the power is turned on．
こ4	$\begin{gathered} \text { OFF2 } \\ \text { (OFF } \\ \text { timer 2) } \end{gathered}$	OFF delay	Delay the timing of turning data off by the time data output by specified time in case the signal is off when the power is turned on．

Appendix 3
 Input terminal function selection parameters

Table $8-3$ is the function setting of 12 input terminals（including 4 virtual input terminals）．
Table 8－4 is the input terminal functions．

Table 8－3 Input terminal function selection parameters

Title	Communication No．	Function	Adjustment range（Note 1）	Default setting
F 104	0104	Always active function selection 1	0－153	\square
F 608	0108	Always active function selection 2	0－153	\square
$F ; 10$	0110	Always active function selection 3	0－153	\square
F i i	0111	Input terminal selection 1A（F）	$0-203$	2
F ：iz	0112	Input terminal selection 2A（R）	0 －203	4
F ： 13	0113	Input terminal selection 3A（RES）	0 －203	\square
F： 14	0114	Input terminal selection 4A（S1）	－203	10
F ：is	0115	Input terminal selection 5 （S2）	0 －203	12
Fi：${ }^{\text {F }}$	0116	Input terminal selection 6 （S3）	0－203	14
F $1: 1$	0117	Input terminal selection 7 （VIB）	$0-203$	15
$F: 18$	0118	Input terminal function selection 8 （VIA）	8－55	こ4
F 15i	0151	Input terminal function selection 1B（F）	0 －203	\square
F15z	0152	Input terminal function selection 2B（R）	$0-203$	\square
F153	0153	Input terminal selection 3B（RES）	$0-203$	0
F154	0154	Input terminal selection 4B（S1）	$0-203$	0
F155	0155	Input terminal selection 1C（F）	$0-203$	\square
F 155	0156	Input terminal selection 2C（R）	$0-203$	0
8973	A973	Virtual input terminal selection 1	$0-203$	0
8974	A974	Virtual input terminal selection 2	ローご可	\square
8975	A975	Virtual input terminal selection 3	0－203	0
8975	A976	Virtual input terminal selection 4	$0-203$	0

Note 1：For an explanation of the adjustment range，see Table 8－4＂Input terminal functions．＂

Table 8－4 Input terminal functions

Parameter setting		Function	Parameter setting		Function
Positive logic	Negative logic		Positive logic	Negative logic	
0	i	No function	日 8	89	Frequency UP
E	3	F：Forward run command	96	91	Frequency DOWN
4	5	R ：Reverse run command	95	93	Clear frequency UP／DOWN
\square	7	ST：Standby	95	97	Coast stop command
$日$	9	RES：Reset command	98	99	Forward／reverse selection
18	；	SS1：Preset－speed command 1	108	161	Run／stop command
！	13	SS2：Preset－speed command 2	964	185	Frequency setting mode forced switching
14	15	SS3：Preset－speed command 3	195	187	Frequency setting mode terminal block
15	17	SS4：Preset－speed command 4	108	109	Command mode terminal block
18	19	Jog run mode	16	1 1	Parameter editing permission
ב	こ1	Emergency stop by external signal	12㫛	121	Fast stop command 1
ここ	こコ	DC braking command	こご	にコ	Fast stop command 2
こ4	こ5	2nd acceleration／deceleration	134	135	Traverse permission signal
26	$\square 7$	3rd acceleration／deceleration	135	137	Low voltage operation signal
2日	こ9	2nd V／F control switching	148	14；	Forward deceleration
$\because コ$	33	2nd stall prevention level	142	143	Forward stop
35	37	PID control prohibition	144	145	Reverse deceleration
45	47	External thermal error input	145	147	Reverse stop
48	49	Forced local from communication	148	149	Factory specific coefficient（Note1）
56	51	Operation hold （hold of 3－wire operation）	150	15	Factory specific coefficient（Note1）
$5 こ$	53	PID integral／differential clear	15こ	153	No． 2 motor switching （AD2＋VF2＋OCS2）
54	55	PID characteristics switching	158	159	Reset Command 2
55	57	Forced run operation	209	20	Parameter editing prohibition
58	59	Fire speed operation	こロコ	203	Parameter reading prohibition
50	51	Acceleration／deceleration suspend signal			
Eこ	53	Power failure synchronized signal			
54	65	My function－S trigger signal			
78	71	Factory specific coefficient（Note1）			
74	75	Integrating wattmeter（kWh）display clear			
75	77	Trace back trigger signal			
78	79	Light－load high－speed operation prohibitive signal			
86	日	Holding of RY－RC terminal output			
日E	日 3	Holding of OUT terminal output			

Note1：Do not set the value．The function is for manufactuer setting．

Appendix 4 Output terminal function selection parameters

Table 8－5 is the function setting of 3 output terminals．
Table 8－6 is the output terminal functions．

Table 8－5 Output terminal function selection parameters

Title	Communication No．	Function	Adjustment range （Note 1）	Default setting
F13年	0130	Output terminal selection 1A（RY－RC）	荗ご5	4
Fiヨi	0131	Output terminal selection 2A（OUT）	荗－55	E
Fiココ	0132	Output terminal selection 3 （FL）	合気気	16
Fiコ7	0137	Output terminal selection 1B（RY－RC）	合気気	$こ 55$
FiヨG	0138	Output terminal selection 2B（OUT）	合気気	こら5

Note 1：For an explanation of the adjustment range，see Table 8－6＂Output terminal functions．＂

Table 8－6 Output terminal functions
Select the positive－logic of the output terminal functions for the My function－S．
Note that negative－logic settings cannot be used for the output terminals．

Input setting	Parameter setting	Function	Operation output specifications（in case of positive logic）
108日	8	Frequency lower limit	ON：Output frequency is more than $!!$ OFF：L L or less
6昌昌	Ξ	Frequency upper limit	ON：Output frequency is $1: 12$ or more OFF：less than $\mathrm{i}: \mathrm{i}$
1804	4	Low－speed detection signal	ON：Output frequency is F ， 10 or more OFF：less than F 10
1086	5	Output frequency attainment signal （acceleration／decelerat ion completed）	ON：Output frequency is within command frequency $\pm F$ 亿 OFF：more than command frequency \pm FIロ
1088	8	Set frequency attainment signal	
1是6	681	Fault signal （trip output）	ON：Inverter tripped OFF：Inverter not tripped
1昂14	94	Over－current detection pre－alarm	ON：Output current is F 5 ；or more OFF：less than FE日
1景15	16	Overload detection pre－alarm	ON：F5S7（\％）or more of calculated value of overload protection level OFF：Less than FGS $7(\%)$
1830	20	Overheat detection pre－alarm	ON：Approx． $95^{\circ} \mathrm{C}$ or more of IGBT element OFF：Less than approx． $95^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{C}\right.$ or less after detection is turned on）
6昌ご	$\Xi こ$	Overvoltage detection pre－alarm	ON：Overvoltage limit in operation
6昌ご	こ4	Power circuit undervoltage detection	ON：Power circuit undervoltage（ 17 RF）detected OFF：Undervoltage detection canceled
18ご	25	Small current detection	ON：After output current comes to F ；；or less，value of less than OFF：more than $F E$ i （FSi $1+5 \square 5$ or more after detection turns on）
6昌ご	28	Over－torque detection	ON：After torque comes to $F=15$ or more，value of more than OFF：less than $F E$ （FGig－FE 9 or less after detection turns on）

Input setting	Parameter setting	Function	Operation output specifications（in case of positive logic）
1830	36	Braking resistor overload pre－alarm	ON： 50% or more of calculated value of $F 759$ set overload protection level OFF：Less than 50\％
1848	49	Run／stop	ON：While operation frequency is output or DC braking is in operation （ロ） OFF：Operation stopped
1843	4 C	Serious failure	ON：At trip OFF：Other than those trip above
1844	44	Light failure	ON：At trip OFF：Other than those trip above
1959	50	Cooling fan ON／OFF	ON：Cooling fan is in operation OFF：Cooling fan is off operation
1 亿5こ	5.	In jogging operation	ON：In jogging operation OFF：Other than jogging operation
1854	54	Operation panel／ terminal block operation	ON：At terminal block operation command OFF：Other than those operation above
1855	55	Cumulative operation time alarm	ON：Cumulative operation time is $\boldsymbol{F} \boldsymbol{\square} \boldsymbol{\Sigma}$ ；or more OFF：less than FEこ ；
195日	58	Communication option communication error	ON：Communication error of communication option occurs OFF：Other than those above
1068	50	Forward／reverse run	ON：Reverse run OFF：Forward run （Operation command state is output while motor operation is stopped．No command is to OFF．）
105こ	EV	Ready for operation 1	ON：Ready for operation（with ST／RUN）
	54	Ready for operation 2	ON：Ready for operation（without ST／RUN）
6昂58	58	Brake release	ON：Brake exciting signal OFF：Brake releasing signal
1878	76	Pre－alarm	ON：One of the following is turned on Pre－alarm of over load，over heat，or over torque． Undervoltage，small current，over torque，lower limit frequency stop，cumulative operation time or momentary power failure deceleration stop．Alaram of $[2, F$ or $;$ OFF：Other than those operation above
1878	78	RS485 communication error	ON：Communication error occurred OFF：Communication works
6昌江	92	Designated data output 1	ON：bit0 of FA50 is ON OFF：bit0 of FA50 is OFF
6策4	94	Designated data output 2	ON：bit1 of FA50 is ON OFF：bit1 of FA50 is OFF
1985	185	Light load output	ON：Less than heavy load torque（ $F \Xi \Xi 5$ to $F \Xi \exists B)$ OFF：$(F \Xi \Xi 5$ to $F \exists \exists 日)$ or more
1688	188	Heavy load output	ON：Heavy load torque（Fヨコ5 to FЭコロ）or more OFF：Less than $(F \Xi \Xi 5$ to $F \exists \Xi 日)$
160	120	Lower limit frequency stop	ON：Lower limit frequency continuous operation
－ここ	1こコ	Power failure synchronized operation	ON：Power failure synchronized operation
1河	だい	Traverse in progress	ON：Traverse in progress

Input setting	Parameter setting	Function	Operation output specifications（in case of positive logic）
¢ 15	1ご	Traverse deceleration in progress	ON：Traverse deceleration in progress
168	128	Parts replacement alarm	ON：Any one of cooling fan，control board capacitor，or main circuit capacitor reaches parts replacement time
1630	130	Over－torque detection pre－alarm	ON ：Torque current is 70% of $5: 5$ setting value or more OFF：less than FE $15 \times 70 \%-F E: G$
－13コ	リゴ	Frequency setting mode selection $1 / 2$	ON：Select frequency setting mode selection $2(F \Omega \square)$
＇ 135	135	Panel／remote selection	ON：Operation command is panel
1： 38	138	Forced continuous operation in progress	ON：Forced continuous operation in progress
1948	148	Specified frequency operation in progress	ON：Specified Frequency operation in progress
6 64	144	Signal in accordance of frequency command	ON：Frequency commanded by $F=99$ and $F 959$ are within $\pm F 157$
1：45	145	Fault signal（output also at a retry waiting）	ON：While inverter is tripped or retried
6 156	156	PTC input alarm signal	ON：PTC thermal input value is 60% of 545 or more OFF：less than 60% of F F 4
1 15こ	15こ	Safe torque off signal	ON：Safe torque off signal output
6：54	154	Analog input break detection alarm	ON：VIB terminal input value is $F 5 \Xi$ or less OFF：more than $F \mathscr{B} \Xi$
1：55	155	F terminal state	ON：terminal F is ON state
1：58	158	R terminal status	ON ：terminal R is ON state
6 65	158	Cooling fan replacement alarm	ON：Cooling fan reaches parts replacement time
（15こ	15こ	Number of starting alarm	ON：Number of starting is 548 or more
1 65	155	Acceleration operation in progress	ON：Acceleration operation in progress
1 658	158	Deceleration operation in progress	ON：Deceleration operation in progress
1678	178	Constant speed operation in progress	ON：Constant speed operation in progress
－「ご	（7E	DC braking in progress	ON：DC braking in progress
1i74	174	Factory specific coefficient	Do not set the value．The function is for manufactuer setting．
1 175	175		
1 178	178		
1988	189	Integral input power pulse output signal	ON：Integral input power unit reach
（18こ	18こ	Shock monitoring pre－alarm signal	ON：Current／torque value reach the shock monitoring detection condition

Input setting	Parameter setting	Function	Operation output specifications（in case of positive logic）
くこコ	$コ こ コ$	My function－S output 1	ON：My function－S output 1 is ON．
にご年	ここ4	My function－S output 2	ON：My function－S output 2 is ON．
たご	ここ	My function－S output 3	ON：My function－S output 3 is ON．
にご宛	$コ コ ロ$	My function－S output 4	ON：My function－S output 4 is ON．
にご回	こ30	My function－S output 5	ON：My function－S output 5 is ON．
にコご	こコご	My function－S output 6	ON：My function－S output 6 is ON．
にご年	こ34	My function－S output 7	ON：My function－S output 7 is ON．
1ここロ	こコロ	My function－S output 8	ON：My function－S output 8 is ON．
たココ	こ3ロ	My function－S output 9	ON：My function－S output 9 is ON．
たご告	240	My function－S output 10	ON：My function－S output 10 is ON．
だぎこ	ごき	My function－S output 11	ON：My function－S output 11 is ON．
砢守4	ご4	My function－S output 12	ON：My function－S output 12 is ON．
1こ45	245	My function－S output 13	ON：My function－S output 13 is ON．
だけ号	248	My function－S output 14	ON：My function－S output 14 is ON．
125日	こ5念	My function－S output 15	ON：My function－S output 15 is ON．
たらこ	$こ ゙ き$	My function－S output 16	ON：My function－S output 16 is ON．
ここち	こ54	Always OFF（for terminal signal tests）	Output signal always OFF

Appendix 5 Internal data

Table 8－7 is the internal data that the My function－S can handle．
This data is not rewritable．It can be used only as input data for comparison and computation．

Table 8－7 Data that My function－S can handle

	Input setting	Communication No．	Function	Unit （Communication）
Monitor display output value	3000	FE00	Operation frequency	0.01 Hz
	3008	FE02	Frequency setting value	0.01 Hz
	3003	FE03	Output current	0．01\％
	3004	FE04	Input voltage（DC detection）	0．01\％
	3005	FE05	Output voltage	0．01\％
	3014	FE14	Comulative operation time	1＝1hour
	3015	FE15	Frequency setting value（after compensation）	0.01 Hz
	3018	FE18	Torque	0．01\％
	302こ	FE22	PID feedback value	0.01 Hz
	3023	FE23	Motor cumulative load factor	0．01\％
	3024	FE24	Inverter cumulative load factor	0．01\％
	3025	FE25	Braking resistance cumlative load factor	1\％
	3025	FE26	Motor load factor	1\％
	3027	FE27	Inverter load factor	1\％
	3029	FE29	Input power	0.01 kW
	3030	FE30	Output power	0.01 kW
	3035	FE35	VIA input value	0．01\％
	3035	FE36	VIB input value	0．01\％
	3037	FE37	VIC input value	0．01\％
	3040	FE40	FM output value	0．01\％
	3070	FE70	Inverter rated current	0．1A
	3076	FE76	Integral input power	It depends on F749
	3077	FE77	Integral output power	$\begin{gathered} \text { It depends on } \\ F-149 \end{gathered}$
	30日可	FE80	Cumulative power ON time	1＝10hours
	2032	FD32	Number of starting	1＝1000times
	2033	FD33	Number of forward starting	1＝1000times
	2034	FD34	Number of reverse starting	1＝1000times
	2040	FD40	Pulse train output value	pps
	2041	FD41	Cumulative fan operation time	1＝10hours
	2070	FD70	Inverter rated current （Carrier frequency corrected）	0．1A

	Input setting	Communication No．	Function	Unit （Communication）
FM／AM output Pulse train output	2000	FD00	Output frequency	0.01 Hz
	2002	FD02	Frequency reference	0.01 Hz
	2003	FD03	Output current	0．01\％
	2004	FD04	Input voltage（DC detection）	0．01\％
	2005	FD05	Output voltage	0．01\％
	2015	FD15	Frequency setting value（after compensation）	0.01 Hz
	こロご	FD22	PID feedback value	0.01 Hz
	2023	FD23	Motor cumulative load factor	0．01\％
	2024	FD24	Inverter cumulative load factor	0．01\％
	2025	FD25	Braking resistance cumlative load factor	1\％
	20こG	FD29	Input power	0.01 kW
	2030	FD30	Output power	0.01 kW
	2040	FD40	Pulse train input value	pps
	3035	FE35	VIA input value	0．01\％
	3035	FE36	VIB input value	0．01\％
	3037	FE37	VIC input value	0．01\％
	3040	FE40	FM output value	0．01\％
	3050	FE50	Fixed output 2	－
	3051	FE51	Fixed output 1	－
	3058	FE52	Fixed output 3	－

Appendix 6 Examples of computing function settings

Of the computing functions listed in Appendix 2，this chapter explains in detail the timer function， counter function，peak hold function，set \＆reset function，and clear function，and gives examples of their settings．

Input function command 14：ON（ON timer），23：ON2（ON timer 2）
When the input signal is turned ON，the ON command delays the timing of putting out an ON signal by the setting time of the ON timer，as shown in the figure below．The timer is turned on only when it receives an ON signal，as illustrated in the timing chart，so no ON signal is put out if the input signal ON time is shorter than the timer ON time（time during which the timer is activated）．Conversely，when the input signal is turned OFF，an OFF signal is put out immediately and the timer is reset．

Specifying the timer ON time
Set the timer ON time with the output time data and specify the output time setting parameter with the input function parameter which pairs off with the timer command function．

Fig．8－1 Processing by ON timer
$<$ Example $>$ Input a signal to the S1 terminal，and output the signal from the Terminal RY－RC with 1 second of delay time（timer ON time）．

		Title	Parameter setting	Description
Prior setting	－	日977	If（Default）	Set My function－S to＂Disabled＂．
		F i \％	8	Assign the＂no function＂to the Terminal S1．
		F＇3星	ごご	Assign the My function－S output 1 to the Terminal RY－RC．
		ロダロ	6.18	Set a delay time（timer ON time）of 1.0 second for the output time data 1.
Unit 1	Step 1	8980	4	Read Terminal S1 input signal．（LD S1）
	Step 2	日 86	14	Activate the ON timer set by 9 O日。
		日㫛㫛	9ニロ	
	Step 3	日㫛㫛	If（Default）	NOP command（no operation）
		8984	8 （Default）	
	Step 4	8985	こごコ	Transfer the result to the My function－S output 1.
－	－	8977	Ξ	Set to＂My function－S always ON＂．

*Diffenece between ON (ON timer) and ON2 (ON timer 2)
The operation of above 2 commands is different in case the signal is already ON when the power is ON.

When the input signal is turned OFF，the OFF command delays the timing of putting out an OFF signal by the setting time of the OFF timer，as shown in the figure below．The timer is activated only when it receives an OFF signal，as illustrated in the timing chart．

Specifying the timer OFF time
Set the timer OFF time with the output time data and specify the output time setting parameter with the input function parameter which pairs off with the timer command function．

Fig．8－2 Processing by OFF timer
$<$ Example $>$ Input a signal to the Terminal S1，and output of Terminal RY－RC is retained for 1 second．

		Title	Parameter setting	Description
Prior setting	－	8977	\square（Default）	Set to＂Disabled＂of the My function－S．
		F：14	\square	Assign the＂no function＂to the Terminal S1．
		Fi30	$こ こ こ$	Assign the My function－S output 1 to the Terminal RY－RC．
		1938	1．81	Set a delay time（timer OFF time）of 1.0 second for the output time data 1.
Unit 1	Step 1	8900	4	Read Terminal S1 input signal．（LD S1）
	Step 2	8901	15	Activate the OFF timer setted by 19 E
		8902	928	
	Step 3	8903	0 （Default）	NOP command（no operation）
		8904	\square（Default）	
	Step 4	8905	ここコ	Transfer the result to the My function－S output 1.
－	－	8977	Ξ	Set to＂My function－S always ON＂．

＊Diffenece between OFF（OFF timer）and OFF2（OFF timer 2）
The operation of above 2 commands is different in case the signal is already ON when the power is ON ．

Note）In case of OFF timer 2，please note that output is ON when the power is ON even though input signal is OFF．

COUNT1 and COUNT2 commands make the inverter count the number of times the input signal is turned on and off，as shown in the figure below，and put out a signal when reaching the specified count．The count is reset to zero using the signal specified with the input function parameter which pairs off with the count command parameter．Note that this command has no relation to the SET and RESET commands described later．

Counter reset signal
Specify the counter reset signal using the input function parameter which pairs off with the counter 1 command setting parameter．

Fig．8－3 Processing by counter

Note 1：Specify a pulse width of at least 5 ms for both ON and OFF pulse input signals．
Note 2：RESET commands have priority over COUNT commands．Therefore，if a reset command is entered instantly the specified count has been reached，the count is reset to zero and no signal is put out．
Note 3：This command cannot be used in plural．Even if do so，that will not result in an intended operation．
＜Example＞Input count signal from Terminal S1 and input reset signal from Terminal S2．
Ouput the signal from Terminal RY－RC with the count of 10.

		Title	Parameter setting	Description
Prior setting	－	日 977	IT，（Default）	Set to＂Disabled＂of the My function－S．
		F： 14	9	Assign the＂no function＂to the Terminal S1．
		$F 15$	8	Assign the＂no function＂to the Terminal S2．
		F136	ごご	Assign the My function－S output 1 to the Terminal RY－RC．
		¢933	16	Set the count of 10 times for COUNT 1.
Unit 1	Step 1	8980	4	Read Terminal S1 input signal（LD S1）
	Step 2	998i	815	Count the number of pulse signals from the Terminal S1．
		898	5	Assign the reset signal output function to the Terminal S2．
	Step 3	8983	8 （Default）	NOP command（no operation）
		8984	\square（Default）	
	Step 4	8985	ごコ	Transfer the result to the My function－S output 1.
－	－	8977	Ξ	Set to＂My function－S always ON＂．

Input function command 17 （COUNT 2 （counter））is the same function as COUNT 1.
For command 17，however，the parameter 895 is used to set the count．

The HOLD command makes the inverter hold the peak value of analog input signal and monitor date，as illustrated in the timing chart below．

Fig．8－4 Processing by peak hold
＜Example＞Hold the peak output current．When the output current ecceeds 120% of the rated current， output the signal from Terminal RY－RC．Reset the hold by the signal from Terminal S1．

		Title	Parameter setting	Description
Prior setting	－	8977	\square（Default）	Set to＂Disabled＂of the My function－S．
		F： 4	\square	Assign the＂no function＂to the Terminal S1．
		F 630	$こ こ こ$	Assign the My function－S output 1 to the Terminal RY－RC．
		19：8	120	Assign a reference value of 120% to the output percent data 1.
Unit 1	Step 1	8908	3003	Read the output current．（LD Output current）
	Step 2	890：	19	Start holding the peak output current．
		9902	4	Assign the reset signal output function to the Terminal S1．
	Step 3	8903	9	Output a signal if the peak value reaches 120% of the rated current．
		8904	918	
	Step 4	8905	ここコ	Transfer the result to the My function－S output 1.
－	－	8977	E	Set to＂My function－S always ON＂．

■ Input function command 20：RESET

The SET command turns on（sets）the output signal when the input signal is turned on，as shown in the figure below，and holds the output signal ON even if the input signal is turned off． The RESET command is used to turn off the output signal．

Fig．8－5 Setting and resetting
＜Example＞Output the input signal from Terminal F to the Terminal RY－RC as the hold signal by using SET command．Reset the output signal by the signal from Terminal S1．

		Title	Parameter setting	Description
Prior setting	－	8977	0 （Default）	Set to＂Disabled＂of the My function－S．
		Fi：	\square	Assign the＂no function＂to the Terminal F．
		F 14	\square	Assign the＂no function＂to the Terminal S1．
		F130	こここ	Assign the My function－S output 1 to the Terminal RY－RC．
Unit 1	Step 1	8900	i	Read F input terminal signal．（LD F）
	Step 2	8901	19	Send a signal to the My function－S output 1 by the SET command，and output a hold signal from the Terminal RY－RC．
		A902	しここご	
	Step 3	8903	\square（Default）	NOP command（no operation）
		8904	0 （Default）	
	Step 4	8905	0 （Default）	NOP command（no operation）
Unit 2	Step 1	A906	4	Read S1 input terminal signal．（LD S1）
	Step 2	A907	20	Cancel the hold command of the My function－S output 1 by the RESET command．
		8908	はご込	
	Step 3	月909	0 （Default）	NOP command（no operation）
		8910	\square（Default）	
	Step 4	日 11	\square（Default）	NOP command（no operation）
－	－	8977	Z	Set to＂My function－S always ON＂．

Input function command 21：CLR（clear）
■ Input function command 22：CLRN（clear（inversion））
The CLR command turns off the input signal setted by the My function－S when the clear signal is turned on，as shown in the figure below．The CLRN command turns off the input signal when the clear signal is turned off．

Clear signal

Fig．8－6 Processing by clear
＜Example＞Turn off the input signal from Terminal F by the clear command from Terminal R ．

		Title	Parameter setting	Description
Prior setting	－	A977	0 （Default）	Set to＂Disabled＂of the My function－S．
		Fifi	\square	Assign the＂no function＂to the Terminal F．
		F：ic	\square	Assign the＂no function＂to the Terminal R．
		F 30	こここ	Assign the My function－S output 1 to the Terminal RY－RC．
Unit 1	Step 1	8908	；	Read F input terminal signal．（LD F）
	Step 2	890：	こ1	CLR command for the Terminal F．
		1902	E	Assing the CLR command to the Terminal R
	Step 3	8903	\square（Default）	NOP command（no operation）
		8904	\square（Default）	
	Step 4	8905	ここご	Transfer the result to the My function－S output 1.
－	－	8977	E	Set to＂My function－S always ON＂．

